## BASED ON

Cornish NG-3

## EFFECT TYPE

Misbiased silicon fuzz

BUILD DIFFICULTY
॥IITD Intermediate

## DOCUMENT VERSION

2.0.0 (2023-10-06)

## PROJECT SUMMARY

A variable-bias silicon fuzz designed to emulate "imminent amp death", the sound of a blown power tube or output transformer right before it all goes up in smoke.


Actual size is $2.3^{\prime \prime} \times 2.43^{\prime \prime}$ (main board) and 2.3" x $0.87^{\prime \prime}$ (bypass board).

## TABLE OF CONTENTS

1 Project Overview
2 Introduction
2-3 Usage
4-6 Parts List
7 Build Notes
8 Schematic

9 Drill Template
10 Enclosure Layout
11 Wiring Diagram
12 Licensing
12 Document Revisions

## INTRODUCTION

The Nysiad Silicon Fuzz is adapted from the Cornish NG-3, first released in 2010 as the successor to the NG-2 and N.G. Fuzz, both favorites of Lou Reed who owned several of each, and also used by John Mayer on his version of Crossroads. Aion FX traced the NG-3 in 2023.

The NG-3 is designed to simulate "imminent amp death", the sound of a bad output transformer or power tube right before the fuse blows (or worse). You can get some fairly traditional sounds from it if the bias knob is all the way up, but once you start to dial it down, the tone quickly turns into a glitchy mess, complete with gating, sag, feedback, velcro, instability, and anything else you'd associate with a misbiased fuzz.

The closest comparison is probably the ZVEX Fuzz Factory. They're different animals, but if you like the sounds you can get from that circuit then you'll probably like this one too.

According to Pete, the NG-3 is the same as the NG-2 except that the internal bias control has been made into an external knob. In truth, it's not quite that simple, though probably mostly accurate. Our tracing. journal includes extensive analysis and speculation on this question if you're curious.

The Nysiad is a direct clone of the original Cornish pedal based on our trace, with the one addition that buffered bypass can be changed to true bypass with a slide switch, as on our other Cornish adaptations.

## USAGE

The Nysiad has the following controls:

- Drive is the amount of clean boost from the op-amp gain stage at the beginning. As it's boosted, it overloads the first transistor stage, creating the initial fuzz tone.
- Sustain controls the signal level coming out of the first transistor gain stage, which affects how much the second transistor gain stage is overloaded, adding to the fuzz tone.
- Bias sets the bias of the second transistor stage, which sets how much of the signal is amplified. At full clockwise, the bias is normal and full signal is passed. As it's turned down, gating effects and "velcro" artifacts start to appear.
- Tone is a basic bass/treble filter identical to the type found in a Big Muff.
- Volume is the overall output.


## USAGE, CONT.

## Overview

The NG-3 is great at what it does, but it's very important to understand what exactly that is. The circuit is intended to sound like it's broken, but it's been designed to get these broken sounds in reliable and repeatable ways. This means it can be difficult to tell whether it's been built successfully, especially if you've never played one before.

The two best things you can do to understand the circuit are 1) watch a demo video such as this one from Shnobel Tone, and 2) study the schematic to see exactly how the circuit is arranged, particularly what each control is supposed to do, since the control labels are not overly intuitive.

Beyond that, we're including a few notes from our own experience to help you get the most out of it.

## Bias control

When you first complete the Nysiad build, the bias control should be turned all the way up (clockwise). This provides the most "normal" fuzz tone. Drive, Sustain and Tone should be around 12:00.

As you turn down the bias control, the circuit becomes more and more unstable and glitchy, especially at higher Drive and Sustain settings.

## Drive vs. Sustain

These controls seem redundant at first glance, but think of them as inter-stage gain controls. Drive is the signal level going into transistor stage 1, and Sustain is the signal level going into transistor stage 2. The first transistor stage overloads differently than the second, so high Drive and low Sustain sounds very different than low Drive and high Sustain.

Generally speaking, the Sustain control has a stronger interaction with the Bias control. For example, with Bias at 12:00 and Sustain toward the bottom half of the rotation, there's a very strong "sag" effect, almost like an over-eager compressor that reduces the gain too much before swelling back to normal. The Drive level has much less of an impact on this effect.

## Noise

The noise floor will be amplified a great deal at higher Drive and Sustain levels, so if you have single-coil pickups, you'll have better luck with one of the noise-canceling positions. This is less of an issue as Bias is turned down since there's a noise-gating effect when nothing is being played.

## PARTS LIST

This parts list is also available in a spreadsheet format which can be imported directly into Mouser for easy parts ordering. Mouser doesn't carry all the parts (most notably potentiometers) so the second tab lists all the non-Mouser parts as well as sources for each.

View parts list spreadsheet $\rightarrow$


## PARTS LIST, CONT.

| PART | VALUE | TYPE | NOTES |
| :---: | :---: | :---: | :---: |
| R33 | 5k1 | Metal film resistor, 1/4W |  |
| R34 | 10k | Metal film resistor, 1/4W |  |
| R35 | 91R | Metal film resistor, 1/4W |  |
| R36 | 100R | Metal film resistor, 1/4W |  |
| R37 | 150R | Metal film resistor, 1/4W |  |
| R38 | 150R | Metal film resistor, 1/4W |  |
| R39 | 150R | Metal film resistor, 1/4W |  |
| R40 | 91R | Metal film resistor, 1/4W |  |
| R41 | 51k | Metal film resistor, 1/4W |  |
| LEDR | 10k | Metal film resistor, 1/4W | LED current-limiting resistor. Adjust value to change LED brightness. |
| C1 | 100n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C2 | 4.7uF | Electrolytic capacitor, 4mm |  |
| C3 | 1 n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C4 | 22uF | Electrolytic capacitor, 5 mm |  |
| C5 | 100n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C6 | 4.7uF | Electrolytic capacitor, 4mm |  |
| C7 | 100pF | MLCC capacitor, NPO/COG |  |
| C8 | $220 n$ | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C9 | 1 n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C10 | 22uF | Electrolytic capacitor, 5 mm |  |
| C11 | 4.7uF | Electrolytic capacitor, 4mm |  |
| C12 | 4.7uF | Electrolytic capacitor, 4mm |  |
| C13 | 1 n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C14 | 220n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C15 | 10 n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C16 | 10n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C17 | 100n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C18 | 1 n | Film capacitor, $7.2 \times 2.5 \mathrm{~mm}$ |  |
| C19 | 4.7uF | Electrolytic capacitor, 4 mm |  |
| C20 | 22uF | Electrolytic capacitor, 5 mm |  |
| C21 | 220uF | Electrolytic capacitor, 6.3 mm | Power supply filter capacitor. |
| C22 | 220uF | Electrolytic capacitor, 6.3 mm | Power supply filter capacitor. |
| C23 | 220uF | Electrolytic capacitor, 6.3 mm | Power supply filter capacitor. |
| C24 | 220uF | Electrolytic capacitor, 6.3 mm | Power supply filter capacitor. |
| C25 | 100n | MLCC capacitor, X7R | Power supply filter capacitor. |
| D1 | 1N5817 | Schottky diode, DO-41 |  |
| D2 | 1N914 | Fast-switching diode, DO-35 |  |
| NYSIAD SILICON FUZZ |  |  |  |

## PARTS LIST, CONT.

| PART | VALUE | TYPE | NOTES |
| :--- | :--- | :--- | :--- |
| Q1 | BC549C | BJT transistor, NPN, TO-92 |  |
| Q2 | BC549C | BJT transistor, NPN, TO-92 |  |
| Q3 | BC549C | BJT transistor, NPN, TO-92 |  |
| Q4 | BC549C | BJT transistor, NPN, TO-92 |  |
| Z1 | LM4040DIZ-5.0 | Zener / voltage reference, TO-92 | Can also use LM4040CIZ-5.0. |
| IC1 | TL071 | BJT transistor, NPN, TO-92 |  |
| IC1-S | DIP-8 socket | BJT transistor, NPN, TO-92 |  |
| DRIVE | 100kA | 16mm right-angle PCB mount pot |  |
| SUSTAIN | 100kB | 16mm right-angle PCB mount pot |  |
| TONE | 100kB | 16mm right-angle PCB mount pot |  |
| BIAS | 100kB | 16mm right-angle PCB mount pot |  |
| VOLUME | $250 k A$ | $16 m m$ right-angle PCB mount pot |  |
| TB-BUF | 4PDT slide | Slide switch, 4PDT | E-Switch EG4208 (4mm lever) or EG4208A (6mm lever) |
| IN | 1/4" mono | 1/4" phone jack, closed frame | Switchcraft 111X or equivalent. |
| OUT | 1/4" mono | 1/4" phone jack, closed frame | Switchcraft 111X or equivalent. |
| DC | $2.1 m m$ | DC jack, 2.1mm panel mount | Mouser 163-4302-E or equivalent. |
| FSW | $3 P D T$ | Stomp switch, 3PDT |  |
| ENC | $125 B$ | Enclosure, die-cast aluminum | Can also use a Hammond 1590N1. |

## Bypassing the true bypass / buffer switch

The E-Switch EG4208 slide switch used for the true bypass/buffer selector is available from Mouser Electronics but may not be accessible to everyone. If you are unable to obtain it, you can hard-wire the switch to either true bypass mode or buffered mode by soldering jumpers to the switch pads.


## Transistor substitutions

The BC549C and BC550C are interchangeable with no difference in sound, so either can be used. If you want to substitute a different transistor, you'll want one with very high hFE, in the 600s.

The PCB layout uses the B-C-E transistor pinout, which is the opposite of the E-B-C convention used by transistors with a "2N" prefix such as the 2N3904. The closest substitute in this series is the 2N5089. If using these, rotate them 180 degrees. Use a multimeter to check the pinout if you're not sure.

The transistor outlines also include a rectangular collector pad above the "B" and "E" pins so that a SMD transistor such as the BC849C can be used.

## Z1 zener/reference voltage

Z1 (LM4040DIZ-5.0) is a micropower zener diode in a TO-92 transistor package, intended for highprecision voltage references at low operating currents. Accordingly, the bias resistors (R21-23 and the Bias pot) are a lot larger than you'd expect.

These micropower types are designed to be extremely stable at low currents and they do not need a filter capacitor according to the datasheet. If Z1 was a standard zener diode, it would likely not drop its full 5 V voltage and would be noisy or unstable without a filter capacitor.

The LM4040 is the only part that will work properly without circuit modifications. The tolerance grade suffix ( $A=0.1 \%, B=0.2 \%, C=0.5 \%$, or $D=1 \%$ ) is unimportant, so you can substitute whichever type is easiest to find as long as it's 5.0V. The traced NG-3 used the LM4040DIZ-5.0, which is the cheapest type, but the CIZ has been used in the Cornish OC-1.

## SCHEMATIC




## DRILL TEMPLATE

Cut out this drill template, fold the edges and tape it to the enclosure. Before drilling, it's recommended to first use a center punch for each of the holes to help guide the drill bit.

Ensure that this template is printed at $100 \%$ or "Actual Size". You can double-check this by measuring the scale on the printed page.

Top jack layout assumes the use of closed-frame jacks like the Switchcraft 111X. Open-frame jacks will not fit in layouts with 5 or more knobs due to the placement of the DC jack.

LED hole drill size assumes the use of a 5 mm LED bezel, available from several parts suppliers. Adjust size accordingly if using something different, such as a 3mm bezel, a plastic bezel, or just a plain LED.


## ENCLOSURE LAYOUT

Enclosure is shown without jacks. See next page for jack layout and wiring.



## LICENSE \& USAGE

No direct support is offered for these projects beyond the provided documentation. It's assumed that you have at least some experience building pedals before starting one of these. Replacements and refunds cannot be offered unless it can be shown that the circuit or documentation are in error.

All of these circuits have been tested in good faith in their base configurations. However, not all the modifications or variations have necessarily been tested. These are offered only as suggestions based on the experience and opinions of others.

Projects may be used for commercial endeavors in any quantity unless specifically noted. No attribution is necessary, though a link back is always greatly appreciated. The only usage restrictions are that (1) you cannot resell the PCB as part of a kit without prior arrangement, and (2) you cannot "goop" the circuit, scratch off the screenprint, or otherwise obfuscate the circuit to disguise its source. (In other words: you don't have to go out of your way to advertise the fact that you use these PCBs, but please don't go out of your way to hide it. The guitar effects industry needs more transparency, not less!)

## DOCUMENT REVISIONS

### 2.0.0 (2023-10-06)

New PCB layout to add P-2 compatibility based on our trace. Changed transistor outlines to BC549/550 convention. Changed R7 to 10k and added information on this change to the build notes section.

### 1.0.2 (2023-08-04)

Changed R39 to 51k and added information on this change to the build notes section.

### 1.0.1 (2020-04-06)

Added notes about resistors in first transistor stage (R18 and R19).
1.0.0 (2019-03-14)

Initial release.

